

django-csp

django-csp adds Content-Security-Policy [http://www.w3.org/TR/CSP/] headers to Django applications.

	Version

	3.5

	Code

	https://github.com/mozilla/django-csp

	License

	BSD; see LICENSE file

	Issues

	https://github.com/mozilla/django-csp/issues

Contents:

	Installing django-csp

	Configuring django-csp
	Policy Settings

	Other Settings

	Modifying the Policy with Decorators
	@csp_exempt

	@csp_update

	@csp_replace

	@csp

	Using the generated CSP nonce
	Middleware

	Context Processor

	Django Template Tag/Jinja Extension

	CSP Violation Reports
	Throttling the number of reports

	Contributing
	Style

	Tests

Indices and tables

	Index

	Module Index

	Search Page

Installing django-csp

First, install django-csp via pip or from source:

pip
$ pip install django-csp

source
$ git clone https://github.com/mozilla/django-csp.git
$ cd django-csp
$ python setup.py install

Now edit your project’s settings module, to add the django-csp middleware
to MIDDLEWARE, like so:

MIDDLEWARE = (
 # ...
 'csp.middleware.CSPMiddleware',
 # ...
)

That should do it! Go on to configuring CSP.

Configuring django-csp

Content-Security-Policy [http://www.w3.org/TR/CSP/] is a complicated header. There are many values
you may need to tweak here.

Note

Note when a setting requires a tuple or list. Since Python strings
are iterable, you may get very strange policies and errors.

It’s worth reading the latest CSP spec and making sure you understand it
before configuring django-csp.

Policy Settings

These settings affect the policy in the header. The defaults are in
italics.

Note

The “special” source values of 'self', 'unsafe-inline',
'unsafe-eval', 'none' and hash-source ('sha256-...') must be quoted! e.g.:
CSP_DEFAULT_SRC = ("'self'",). Without quotes they will not work
as intended.

	CSP_DEFAULT_SRC

	Set the default-src directive. A tuple or list of
values, e.g. ("'self'", 'cdn.example.net'). ‘self’

	CSP_SCRIPT_SRC

	Set the script-src directive. A tuple or list. None

	CSP_IMG_SRC

	Set the img-src directive. A tuple or list. None

	CSP_OBJECT_SRC

	Set the object-src directive. A tuple or list. None

	CSP_MEDIA_SRC

	Set the media-src directive. A tuple or list. None

	CSP_FRAME_SRC

	Set the frame-src directive. A tuple or list. None

	CSP_FONT_SRC

	Set the font-src directive. A tuple or list. None

	CSP_CONNECT_SRC

	Set the connect-src directive. A tuple or list. None

	CSP_STYLE_SRC

	Set the style-src directive. A tuple or list. None

	CSP_BASE_URI

	Set the base-uri directive. A tuple or list. None
Note: This doesn’t use default-src as a fall-back.

	CSP_CHILD_SRC

	Set the child-src directive. A tuple or list. None Note: Deprecated in CSP v3. Use frame-src and worker-src instead.

	CSP_FRAME_ANCESTORS

	Set the FRAME_ANCESTORS directive. A tuple or list. None
Note: This doesn’t use default-src as a fall-back.

	CSP_FORM_ACTION

	Set the FORM_ACTION directive. A tuple or list. None
Note: This doesn’t use default-src as a fall-back.

	CSP_SANDBOX

	Set the sandbox directive. A tuple or list. None
Note: This doesn’t use default-src as a fall-back.

	CSP_REPORT_URI

	Set the report-uri directive. A tuple or list. Each URI can be a
full or relative URI. None
Note: This doesn’t use default-src as a fall-back.

	CSP_MANIFEST_SRC

	Set the manifest-src directive. A tuple or list. None

	CSP_WORKER_SRC

	Set the worker-src directive. A tuple or list. None

	CSP_PLUGIN_TYPES

	Set the plugin-types directive. A tuple or list. None
Note: This doesn’t use default-src as a fall-back.

	CSP_REQUIRE_SRI_FOR

	Set the require-sri-for directive. A tuple or list. None
Valid values: script, style, or both. See: require-sri-for-known-tokens [https://w3c.github.io/webappsec-subresource-integrity/#opt-in-require-sri-for]
Note: This doesn’t use default-src as a fall-back.

	CSP_UPGRADE_INSECURE_REQUESTS

	Include upgrade-insecure-requests directive. A boolean. False
See: upgrade-insecure-requests [https://w3c.github.io/webappsec-upgrade-insecure-requests/#delivery]

	CSP_BLOCK_ALL_MIXED_CONTENT

	Include block-all-mixed-content directive. A boolean. False
See: block-all-mixed-content [https://w3c.github.io/webappsec-mixed-content/]

	CSP_INCLUDE_NONCE_IN

	Include dynamically generated nonce in all listed directives, e.g. CSP_INCLUDE_NONCE_IN=['script-src'] will add 'nonce-<b64-value>' to the script-src directive. A tuple or list. None

Changing the Policy

The policy can be changed on a per-view (or even per-request) basis. See
the decorator documentation for more details.

Other Settings

These settings control the behavior of django-csp. Defaults are in
italics.

	CSP_REPORT_ONLY

	Send “report-only” headers instead of real headers. See the spec [http://www.w3.org/TR/CSP/]
and the chapter on reports for more info. A
boolean. False

	CSP_EXCLUDE_URL_PREFIXES

	A tuple of URL prefixes. URLs beginning with any of these will
not get the CSP headers. ()

Warning

Excluding any path on your site will eliminate the benefits of CSP
everywhere on your site. The typical browser security model for
JavaScript considers all paths alike. A Cross-Site Scripting flaw
on, e.g., excluded-page/ can therefore be leveraged to access everything
on the same origin.

Modifying the Policy with Decorators

Content Security Policies should be restricted and paranoid by default.
You may, on some views, need to expand or change the policy. django-csp
includes four decorators to help.

@csp_exempt

Using the @csp_exempt decorator disables the CSP header on a given
view.

from csp.decorators import csp_exempt

Will not have a CSP header.
@csp_exempt
def myview(request):
 return render(...)

You can manually set this on a per-response basis by setting the
_csp_exempt attribute on the response to True:

Also will not have a CSP header.
def myview(request):
 response = render(...)
 response._csp_exempt = True
 return response

@csp_update

The @csp_update header allows you to append values to the source
lists specified in the settings. If there is no setting, the value
passed to the decorator will be used verbatim.

Note

To quote the CSP spec: “There’s no inheritance; … the default list
is not used for that resource type” if it is set. E.g., the following
will not allow images from ‘self’:

default-src 'self'; img-src imgsrv.com

The arguments to the decorator the same as the settings without the CSP_ prefix, e.g. IMG_SRC.
(They are also case-insensitive.) The values are either strings, lists
or tuples.

from csp.decorators import csp_update

Will allow images from imgsrv.com.
@csp_update(IMG_SRC='imgsrv.com')
def myview(request):
 return render(...)

@csp_replace

The @csp_replace decorator allows you to replace a source list
specified in settings. If there is no setting, the value passed to the
decorator will be used verbatim. (See the note under @csp_update.)

The arguments and values are the same as @csp_update:

from csp.decorators import csp_replace

settings.CSP_IMG_SRC = ['imgsrv.com']
Will allow images from imgsrv2.com, but not imgsrv.com.
@csp_replace(IMG_SRC='imgsrv2.com')
def myview(request):
 return render(...)

@csp

If you need to set the entire policy on a view, ignoring all the
settings, you can use the @csp decorator. The arguments and values
are as above:

from csp.decorators import csp

@csp(DEFAULT_SRC=["'self'"], IMG_SRC=['imgsrv.com'],
 SCRIPT_SRC=['scriptsrv.com', 'googleanalytics.com'])
def myview(request):
 return render(...)

Using the generated CSP nonce

When CSP_INCLUDE_NONCE_IN is configured, the nonce value is returned in the CSP header. To actually make the browser do anything with this value, you will need to include it in the attributes of the tags that you wish to mark as safe.

Middleware

Installing the middleware creates a lazily evaluated property csp_nonce and attaches it to all incoming requests.

 MIDDLEWARE_CLASSES = (
 #...
 'csp.middleware.CSPMiddleware',
 #...
)

This value can be accessed directly on the request object in any view or template and manually appended to any script element like so -

<script nonce="{{request.csp_nonce}}">
 var hello="world";
</script>

Assuming the CSP_INCLUDE_NONCE_IN list contains the script-src directive, this will result in the above script being allowed.

Context Processor

This library contains an optional context processor, adding csp.context_processors.nonce to your configured context processors exposes a variable called nonce into the global template context. This is simple shorthand for request.csp_nonce, but can be useful if you have many occurences of script tags.

<script nonce="{{nonce}}">
 var hello="world";
</script>

Django Template Tag/Jinja Extension

Note

If you’re making use of csp.extensions.NoncedScript you need to have jinja2>=2.9.6 installed, so please make sure to either use django-csp[jinja2] in your requirements or define it yourself.

Since it can be easy to forget to include the nonce property in a script tag, there is also a script template tag available for both Django templates and Jinja environments.

This tag will output a properly nonced script every time. For the sake of syntax highlighting, you can wrap the content inside of the script tag in <script> html tags, which will be subsequently removed in the rendered output. Any valid script tag attributes can be specified and will be forwarded into the rendered html.

Django:

{% load csp %}
{% script type="application/javascript" async=False %}
 <script>
 var hello='world';
 </script>
{% endscript %}

Jinja:

(assumes csp.extensions.NoncedScript is added to the jinja extensions setting)

{% script type="application/javascript" async=False %}
 <script>
 var hello='world';
 </script>
{% endscript %}

Will output -

<script nonce='123456' type="application/javascript" async=false></script>

CSP Violation Reports

When something on a page violates the Content-Security-Policy, and the
policy defines a report-uri directive, the user agent may POST a
report [http://www.w3.org/TR/CSP/#sample-violation-report]. Reports are JSON blobs containing information about how the
policy was violated.

Note: django-csp no longer handles report processing itself, so you will
need to stand up your own app to receive them, or else make use of a
third-party report processing service.

Throttling the number of reports

To throttle the number of requests made to your report-uri endpoint, you
can use csp.contrib.rate_limiting.RateLimitedCSPMiddleware instead of
csp.middleware.CSPMiddleware and set the CSP_REPORT_PERCENTAGE option:

	CSP_REPORT_PERCENTAGE

	Percentage of requests that should see the report-uri directive.
Use this to throttle the number of CSP violation reports made to your
CSP_REPORT_URI. A float between 0 and 1 (0 = no reports at all).
Ignored if CSP_REPORT_URI isn’t set.

Contributing

Patches are more than welcome! You can find the issue tracker on GitHub [https://github.com/mozilla/django-csp/issues] and we’d love pull
requests.

Style

Patches should follow PEP8 [http://www.python.org/dev/peps/pep-0008/] and should not introduce any new violations
as detected by the flake8 [https://pypi.python.org/pypi/flake8] tool.

Tests

Patches fixing bugs should include regression tests (ideally tests that
fail without the rest of the patch). Patches adding new features should
test those features thoroughly.

To run the tests, install the requirements (probably into a virtualenv [http://www.virtualenv.org/]):

pip install -e .
pip install -e .[tests]

Then just py.test [https://pytest.org/latest/usage.html] to run the tests:

py.test

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 django-csp

 		
 Installing django-csp

 		
 Configuring django-csp

 		
 Policy Settings

 		
 Changing the Policy

 		
 Other Settings

 		
 Modifying the Policy with Decorators

 		
 @csp_exempt

 		
 @csp_update

 		
 @csp_replace

 		
 @csp

 		
 Using the generated CSP nonce

 		
 Middleware

 		
 Context Processor

 		
 Django Template Tag/Jinja Extension

 		
 CSP Violation Reports

 		
 Throttling the number of reports

 		
 Contributing

 		
 Style

 		
 Tests

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

