Django-CSP Documentation
Release 3.4

James Socol, Mozilla

Feb 24, 2020

Contents

Installing django-csp

Configuring django-csp

2.1 Policy Settings
2.2 Other Settings v v v i it

Modifying the Policy with Decorators

3.1 @esp_exempt ... i e e e e e e e e
32 Qecsp_update ... e e e
33 @csp_replacCe . . ov i e e e e e e e e e
34 QCSP « i e e e e

CSP Violation Reports

Contributing

5.0 Style
52 Tests . .o e e e e e

Indices and tables

Django-CSP Documentation, Release 3.4

django-csp adds Content-Security-Policy headers to Django applications.
Version 3.4
Code https://github.com/mozilla/django-csp
License BSD; see LICENSE file
Issues https://github.com/mozilla/django-csp/issues

Contents:

Contents 1

http://www.w3.org/TR/CSP/
https://github.com/mozilla/django-csp
https://github.com/mozilla/django-csp/issues

Django-CSP Documentation, Release 3.4

2 Contents

CHAPTER 1

Installing django-csp

First, install django-csp via pip or from source:

pip
pip install django-csp

o o=

source
git clone https://github.com/mozilla/django-csp.git
cd django-csp

python setup.py install

U 0 Uy H=

Now edit your project’s settings module, to add the django-csp middleware to MIDDLEWARE_CLASSES, like so:

MIDDLEWARE_CLASSES = (

#
'csp.middleware.CSPMiddleware',

#

That should do it! Go on to configuring CSP.

Django-CSP Documentation, Release 3.4

4 Chapter 1. Installing django-csp

CHAPTER 2

Configuring django-csp

Content-Security-Policy is a complicated header. There are many values you may need to tweak here.

Note: Note when a setting requires a tuple or list. Since Python strings are iterable, you may get very strange policies

and errors.

It’s worth reading the latest CSP spec and making sure you understand it before configuring django-csp.

2.1 Policy Settings

These settings affect the policy in the header. The defaults are in italics.

Note: The “special” source values of 'self', 'unsafe-inline', '"unsafe-eval', and 'none' must be

quoted! e.g.: CSP_DEFAULT_SRC = ("'self'",). Without quotes they will not work as intended.
CSP_DEFAULT_SRC Set the default-src directive. A tuple or list of values, e.g. ("'self'", 'cdn.
example.net'). ‘self’

CSP_SCRIPT_SRC Setthe script-src directive. A tuple or list. None
CSP_IMG_SRC Setthe img-src directive. A tuple or list. None
CSP_OBJECT_SRC Set the object-src directive. A tuple or list. None
CSP_MEDIA_SRC Setthe media-src directive. A tuple or list. None
CSP_FRAME_SRC Set the frame-src directive. A tuple or list. None
CSP_FONT_SRC Set the font—-src directive. A tuple or list. None
CSP_CONNECT_SRC Set the connect-src directive. A tuple or list. None

CSP_STYLE_SRC Set the style-src directive. A tuple or list. None

http://www.w3.org/TR/CSP/

Django-CSP Documentation, Release 3.4

CSP_BASE_URI Setthe base-uri directive. A tuple or list. None Note: This doesn’t use default-src as a fall-back.

CSP_CHILD_SRC Setthe child-src directive. A tuple or list. None Note: Deprecated in CSP v3. Use frame-src
and worker-src instead.

CSP_FRAME_ANCESTORS Set the FRAME_ANCESTORS directive. A tuple or list. None Note: This doesn’t use
default-src as a fall-back.

CSP_FORM_ACTION Setthe FORM_ACTION directive. A tuple or list. None Note: This doesn’t use default-src as
a fall-back.

CSP_SANDBOX Set the sandbox directive. A tuple or list. None Note: This doesn’t use default-src as a fall-back.

CSP_REPORT_URI Set the report—uri directive. A string with a full or relative URI. Note: This doesn’t use
default-src as a fall-back.

CSP_MANIFEST_SRC Setthe manifest-src directive. A tuple or list. None
CSP_WORKER_SRC Set the worker—src directive. A tuple or list. None

CSP_PLUGIN_TYPES Set the plugin-types directive. A tuple or list. None Note: This doesn’t use default-src
as a fall-back.

CSP_REQUIRE_SRI_FOR Set the require-sri-for directive. A tuple or list. None Valid values: script,
style, or both. See: require-sri-for-known-tokens Note: This doesn’t use default-src as a fall-back.

CSP_UPGRADE_ INSECURE_REQUESTS Include upgrade-insecure-requests directive. A boolean.
False See: upgrade-insecure-requests

CSP_BLOCK_ALL_MIXED_ CONTENT Include block—-all-mixed-content directive. A boolean. False See:
block-all-mixed-content

2.1.1 Changing the Policy

The policy can be changed on a per-view (or even per-request) basis. See the decorator documentation for more
details.

2.2 Other Settings

These settings control the behavior of django-csp. Defaults are in italics.

CSP_REPORT_ONLY Send “report-only” headers instead of real headers. See the spec and the chapter on reports for
more info. A boolean. False

CSP_EXCLUDE_URL_PREFIXES A tuple of URL prefixes. URLs beginning with any of these will not get the CSP
headers. ()

Warning: Excluding any path on your site will eliminate the benefits of CSP everywhere on your site. The typical
browser security model for JavaScript considers all paths alike. A Cross-Site Scripting flaw on, e.g., excluded-page/
can therefore be leveraged to access everything on the same origin.

6 Chapter 2. Configuring django-csp

https://w3c.github.io/webappsec-subresource-integrity/#opt-in-require-sri-for
https://w3c.github.io/webappsec-upgrade-insecure-requests/#delivery
https://w3c.github.io/webappsec-mixed-content/
http://www.w3.org/TR/CSP/

CHAPTER 3

Modifying the Policy with Decorators

Content Security Policies should be restricted and paranoid by default. You may, on some views, need to expand or
change the policy. django-csp includes four decorators to help.

3.1 @Rcsp_exempt

Using the @csp_exempt decorator disables the CSP header on a given view.

from csp.decorators import csp_exempt

Will not have a CSP header.
@csp_exempt
def myview (request) :

return render (...)

You can manually set this on a per-response basis by setting the _csp_exempt attribute on the response to True:

Also will not have a CSP header.
def myview (request) :
response = render(...)
response._csp_exempt = True
return response

3.2 @csp_update

The @csp_update header allows you to append values to the source lists specified in the settings. If there is no
setting, the value passed to the decorator will be used verbatim.

Note: To quote the CSP spec: “There’s no inheritance; ... the default list is not used for that resource type” if it is
set. E.g., the following will not allow images from ‘self’:

Django-CSP Documentation, Release 3.4

default-src 'self'; img-src imgsrv.com

The arguments to the decorator the same as the settings without the CSP_ prefix, e.g. IMG_SRC. (They are also
case-insensitive.) The values are either strings, lists or tuples.

from csp.decorators import csp_update

Will allow images from Iimgsrv.com.
@csp_update (IMG_SRC='imgsrv.com')
def myview (request) :

return render(...)

3.3 Resp_replace

The @csp_replace decorator allows you to replace a source list specified in settings. If there is no setting, the
value passed to the decorator will be used verbatim. (See the note under @csp_update.)

The arguments and values are the same as @csp_update:

from csp.decorators import csp_replace

settings.CSP_IMG_SRC = ['imgsrv.com']
Will allow images from imgsrvZ2.com, but not imgsrv.com.
@csp_replace (IMG_SRC='imgsrv2.com")
def myview (request) :
return render(...)

3.4 @csp

If you need to set the entire policy on a view, ignoring all the settings, you can use the @csp decorator. The arguments
and values are as above:

from csp.decorators import csp

@csp (DEFAULT_SRC=["'self'"], IMG_SRC=['imgsrv.com'],
SCRIPT_SRC=['scriptsrv.com', 'googleanalytics.com'])
def myview (request) :
return render(...)

8 Chapter 3. Modifying the Policy with Decorators

CHAPTER 4

CSP Violation Reports

When something on a page violates the Content-Security-Policy, and the policy defines a report—uri directive, the
user agent may POST a report. Reports are JSON blobs containing information about how the policy was violated.

Note: django-csp no longer handles report processing itself, so you will need to stand up your own app to receive
them, or else make use of a third-party report processing service.

http://www.w3.org/TR/CSP/#sample-violation-report

Django-CSP Documentation, Release 3.4

10 Chapter 4. CSP Violation Reports

CHAPTER B

Contributing

Patches are more than welcome! You can find the issue tracker on GitHub and we’d love pull requests.

5.1 Style

Patches should follow PEP8 and should not introduce any new violations as detected by the flake8 tool.

5.2 Tests

Patches fixing bugs should include regression tests (ideally tests that fail without the rest of the patch). Patches adding
new features should test those features thoroughly.

To run the tests, install the requirements (probably into a virtualenv):

pip install -e .
pip install -e . [tests]

Then just py.test to run the tests:

py.test

11

https://github.com/mozilla/django-csp/issues
http://www.python.org/dev/peps/pep-0008/
https://pypi.python.org/pypi/flake8
http://www.virtualenv.org/
https://pytest.org/latest/usage.html

Django-CSP Documentation, Release 3.4

12 Chapter 5. Contributing

CHAPTER O

Indices and tables

* genindex
* modindex

e search

13

	Installing django-csp
	Configuring django-csp
	Policy Settings
	Other Settings

	Modifying the Policy with Decorators
	@csp_exempt
	@csp_update
	@csp_replace
	@csp

	CSP Violation Reports
	Contributing
	Style
	Tests

	Indices and tables

